Atomistic Measures of Materials Strength

نویسندگان

  • Ju Li
  • Sidney Yip
چکیده

We examine the role of atomistic simulations in multiscale modeling of mechanical behavior of stressed solids. Theoretical strength is defined through modes of structural instability which, in the long wavelength limit, are specified by criteria involving elastic stiffness coefficients and the applied stress; more generally, strength can be characterized by the onset of soft vibrational modes in the deformed lattice. Alternatively, MD simulation of stress-strain response provides a direct measure of the effects of small-scale microstructure on strength, as illustrated by results on SiC in single crystal, amorphous, and nanocrystalline phases. A Hall-Petch type scaling is introduced to estimate strength of laboratory specimens containing microstructural flaws of certain critical size. A preliminary simulation of Cu thin film nano-indentation is described as a means of probing the ideal shear strength. The challenge of formulating a local measure of the driving force for defect motion is briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic modeling of the dislocation dynamics and evaluation of static yield stress

Static strength characteristics of structural materials are of great importance for the analysis of the materials behaviour under mechanical loadings. Mechanical characteristics of structural materials such as elastic limit, strength limit, ultimate tensile strength, plasticity are, unlike elastic moduli, very sensitive to the presence of impurities and defects of crystal structure. Direct atom...

متن کامل

Atomistically Informed Mesoscale Model of Alpha-Helical Protein Domains

Multiscale mechanical properties of biological protein materials have been the focal point of extensive investigations over the past decades. In this article, we present the development of a mesoscale model of alpha-helical (AH) protein domains, key constituents in a variety of biological materials, including cells, hair, hooves, and wool. Our model, derived solely from results of full atomisti...

متن کامل

Atomistic simulation of the transition from atomistic to macroscopic cratering.

Using large-scale atomistic simulations, we show that the macroscopic cratering behavior emerges for projectile impacts on Au at projectile sizes between 1000 and 10000 Au atoms at impact velocities comparable to typical meteoroid velocities. In this size regime, we detect a compression of material in Au nanoparticle impacts similar to that observed for hypervelocity macroscopic impacts. The si...

متن کامل

Atomistic simulation of matter under stress: crossover from hard to soft materials

Atomistic simulation can give insights to the mechanical behavior of stressed crystalline hard materials. Theoretical strength, de*ned in the long wavelength limit through elastic stability criteria, or more generally in terms of soft vibrational modes in the deformed lattice, can be studied by direct simulation of stress–strain response. It is suggested that this approach may be applied as wel...

متن کامل

Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures

Once the characteristic size of materials reaches nanoscale, the mechanical properties may change drastically and classical mechanisms of materials failure may cease to hold. In this paper, we focus on joint atomistic-continuum studies of failure and deformation of nanoscale materials. In the first part of the paper, we discuss the size dependence of brittle fracture. We illustrate that if the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002